Sequences and Series 4

1. By using the difference method find the sim of the first n terms:

$$\frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{1}{2 \cdot 3 \cdot 4 \cdot 5} + \frac{1}{3 \cdot 4 \cdot 5 \cdot 6} + \dots = \frac{1}{18} - \frac{1}{3(n+1)(n+2)(n+3)}$$

- **2.** Express $\frac{2}{r^2-1}$ in partial fractions. Hence, find a simple expression for $S = \sum_{r=2}^{n} \frac{2}{r^2-1}$ and determine whether S converges when n tends to infinity.
- **3.** If $\sum_{r=1}^{n} T_r = 3n^2 + 4n$, find the value of $\sum_{r=1}^{n-1} T_r$. Deduce the general term T_n and hence find $\sum_{r=n+1}^{2n} T_r$.
- **4.** The sum of the first 2n terms of a series $18n 12n^2$. Find the sum of the first n terms and the nth term of this series. Show that this series is an arithmetic.
- 5. In a set of integers between the numbers 1 and 10,000,
 - (a) how many of these numbers are divisible by 3,4, 5 and 11?
 - (b) how many of these numbers are divisible by 3,4, 5 or 11?
- **6.** The sum of the first n terms of a geometric sequence is given by $S_n = 15(1 3^{-n})$. Find
 - (a) the nth term,
 - (b) the common ratio,
 - (c) the smallest value of n such that $S_{\infty} S_n < 0.01$.
- 7. Verify the identity $\frac{2r-1}{r(r-1)} \frac{2r+1}{r(r+1)} = \frac{2}{(r-1)(r+1)}$. Hence, using the method of difference, prove that

$$\sum_{r=2}^{n} \frac{2}{(r-1)(r+1)} = \frac{3}{2} - \frac{2n+1}{n(n+1)} \; .$$

Deduce the sum of the infinite series $\frac{1}{1\times 3} + \frac{1}{2\times 4} + \frac{1}{3\times 5} + \dots + \frac{1}{(n-1)(n+1)} + \dots$

8. If $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are three consecutive terms in an arithmetic progression.

Show that $\frac{y+z}{x}$, $\frac{z+x}{y}$, $\frac{x+y}{z}$ also from three consecutive terms in an arithmetic progression.

- 9. If S is the sum of the series $1 + 3x + 5x^2 + 7x^3 + \dots + (2n+1)x^n$, for $x \neq 1$, by considering (1-x)S, or otherwise, show that $S = \frac{1+x-(2n+3)x^{n+1}+(2n+1)x^{n+2}}{(1-x)^2}$, $x \neq 1$.
- **10.** (a) The sequence of positive integers is grouped into four as follows: (1,2,3,4), (5,6,7,8), (9,10,11,12), ... Show that the sum of all integers in the kth bracket is $S_k = 2(8k - 3)$.
 - (b) If the integers are similarly grouped with m integers in each bracket, find the sum S_n of all integers in the nth bracket in terms of m and n. Hence, show that S_n, S_{2n}, S_{3n} are in arithmetic progression.